
Using waf to produce a tarball for submission to

the arXiv.

BV

[2014-03-08 Sat 14:44]

This topic discusses using waf to produce a tarball from a waf-built LATEX

source area which is suitable for submission to the arXiv.

1 Overview

Waf has good built-in support for building LATEX documents. When sub-

mitting to the arXiv one has to prepare a tarball that contains just the �les

needed to produce the document and little more.

Waf also has waf dist to produce a tarball of the "source" �les. When I

tried this in a LATEX source area it tarred up everything. Unfortunately the

document in question has a lot of extraneous �les in the working directory

(and repository) that should not be included. This is particularly important

as the arXiv has a size limit on the submitted �les.

I asked about it on waf's google groups and got some tips to try out. Waf

has to �gure out all the �les the document is built from in order to know

when they change and a rebuild is needed. So, a big part of the required

�les should be able to be automatically determined.

Testing this inside the desired document directory is dog slow so I mocked

up a little test document here. This test document is a little unusual in

order to mimic some "features" of the actual document. In particular, two

"main" �les are required: ./document.tex and ./document-bib.tex. The

�rst includes the Bibitex .bbl �le produced as a side e�ect of building the

second. The two are otherwise identical. These shenanigans are needed

because arXiv does not run Bibtex for us and so we need a way to generate

it and produce a main which is independent from Bibtex.

The method I ended up adopting eschews waf dist so that I can do

some massaging of the paths in the produced tar ball. In particular I want

1

http://www.arxiv.org
https://cdcvs.fnal.gov/redmine/projects/lbne-sci-opp/repository/show/lbne-sci-opp
https://cdcvs.fnal.gov/redmine/projects/lbne-sci-opp/repository/show/lbne-sci-opp
https://groups.google.com/forum/#!topic/waf-users/H_lPHWLBF5w
./document.tex
./document-bib.tex

to strip o� the build/ directory for �les that are created during the build.

This �attening is only needed because arXiv runs pdflatex in the source

directory and obviously doesn't know about waf nor its conventions.

The only reason I wanted to use waf dist was in hopes I could leverage

waf distcheck to check that the tarball is complete. However, distcheck

seems to ignore the dist() function and packages up the entire source di-

rectory (default dist behavior). Something to follow up on.

2 The wscript �le

This section annotates the example wscript �le. It starts by de�ning some

conventional variables that waf normally uses for dist and hooking in the

tex tool to do the heavy lifting building the document.

#!/usr/bin/env python

APPNAME = "document"

VERSION = '0.0.0'

def options(opt):

opt.load('tex')

return

def configure(cfg):

cfg.load('tex')

cfg.env.append_value('PDFLATEXFLAGS','-halt-on-error')

Next comes the build() function. It �rst de�nes two task generators,

one for each main document. The �rst is done just for building the .bbl �le.

It ends in an add_group() in order to assure this �le is built. Next comes

the task for the "real" document. Some nodes are de�ned for use there and

in the �nal task generator which is for making the distribution tarball.

def build(bld):

bbl_tex = 'document-bib.tex'

bld(features = 'tex',

type = 'pdflatex',

source = bbl_tex,

outs = 'pdf',

2

prompt = 0)

bld.add_group()

extensions = ['.tex','.pdf','.manifest','-%s.tar.gz'%VERSION]

nodes = [bld.path.find_or_declare(APPNAME+ext) for ext in extensions]

tex, pdf, man, tar = nodes

bld(features = 'tex',

type = 'pdflatex',

source = tex,

outs = 'pdf',

prompt = 0)

bld(rule = tarball,

source = [man, tex],

target = tar,

prefix = APPNAME +'-'+ VERSION + '/', # needs trailing "/"

extra = '**/document-bib.bbl ' + str(tex)

)

The prefix argument de�nes to this last bld() call is a string tacked

on to each �le as it's stored into the tar�le. The extra parameter is a list

of Ant globs to match �les that are not otherwise picked up by waf's tex

scanner. These have to be determined by trial an error. They must remain

as unresolved globs as the �les they match may not exist until after the

document has been built. Files that match under the build/ directory are

okay as described below.

The tarball rule invoked above is de�ned as:

import tarfile

def tarball(task):

bld = task.generator.bld

prefix, extra = task.generator.prefix, task.generator.extra

globs = task.inputs[0].read() + ' ' + extra

nodes = bld.path.ant_glob(globs)

tfname = task.outputs[0].abspath()

ext = os.path.splitext(tfname)[1][1:]

3

with tarfile.open(tfname, 'w:'+ext,) as tf:

for node in nodes:

tar_path = node.nice_path()

if node.is_bld():

tar_path = node.bldpath()

tf.add(node.nice_path(), prefix + tar_path)

Not much to say here. The globs are resolved and added to the tar �le

one by one. Any node which is under the build directory is stored in to the

tar �le at a location relative to the build directory. Otherwise a path relative

to the source directory is used.

Next comes the heart of the glue into waf's "tex" feature. Two methods

are de�ned. The �rst creates a task implemented by the second in such a

way that all scanned �les get passed.

import os

from waflib.TaskGen import feature, after_method

@feature('tex')

@after_method('apply_tex')

def create_another_task(self):

tex_task = self.tasks[-1]

at = self.create_task('manifest', tex_task.outputs)

doc = tex_task.outputs[0]

man = os.path.splitext(str(doc))[0] + '.manifest'

man_node = self.bld.path.find_or_declare(man)

at.outputs.append(man_node)

at.tex_task = tex_task

rebuild whenever the tex task is rebuilt

at.dep_nodes.extend(tex_task.outputs)

The second turns those scanned �les into a "manifest" �le.

from waflib.Task import Task

class manifest(Task):

def run(self):

man_node = self.outputs[0]

self.outputs.append(man_node)

idx = self.tex_task.uid()

nodes = self.generator.bld.node_deps[idx]

with open(man_node.abspath(), 'w') as fp:

for node in nodes:

fp.write(node.nice_path() + '\n')

4

3 Building

The document is built in the usual manner

waf configure build

4 Testing

As mentioned the waf distcheck doesn't seem to honor the tar �le produced

by waf dist and anyways this approach does not use dist. So, testing is

done by "hand".

tar -xvf build/document-0.0.0.tar.gz

pushd document-0.0.0/

pdflatex document.tex > /dev/null

pdflatex document.tex > /dev/null

ls -l

popd

document-0.0.0/document-bib.bbl

document-0.0.0/document-0.0.0/document-bib.bbl

document-0.0.0/document.tex

document-0.0.0/figs/waf-logo.png

document-0.0.0/main.tex

document-0.0.0/preamble.tex

~/org-pub/topics/waf-latex-arxiv/document-0.0.0 ~/org-pub/topics/waf-latex-arxiv

total 104

drwxr-xr-x 2 bv bv 4096 Jan 23 17:59 document-0.0.0

-rw-r--r-- 1 bv bv 281 Jan 23 17:59 document.aux

-rw-r--r-- 1 bv bv 410 Mar 8 2014 document-bib.bbl

-rw-r--r-- 1 bv bv 7147 Jan 23 17:59 document.log

-rw-r--r-- 1 bv bv 67438 Jan 23 17:59 document.pdf

-rw-r--r-- 1 bv bv 150 Mar 8 2014 document.tex

drwxr-xr-x 2 bv bv 4096 Jan 23 17:59 figs

-rw-r--r-- 1 bv bv 184 Mar 8 2014 main.tex

-rw-r--r-- 1 bv bv 42 Mar 8 2014 preamble.tex

~/org-pub/topics/waf-latex-arxiv

5

	Overview
	The wscript file
	Building
	Testing

